

【研究活動·実績】

1. 概要

(和文)

遺伝性不整脈は、心臓の電気的活動をつかさどっているイオンチャネルやその関連分子の遺伝子 異常が原因です。致死的不整脈を引き起こし、心臓突然死に至る可能性のある重篤な病気です。原因 分子やメカニズムの特定が進み、抗不整脈薬や高周波カテーテルアブレーション、植込み型除細動器 などさまざまな治療法が行われていますが、いまだ根本治療法がなく、さらに効果的な治療法・予防 法の開発およびそれに貢献できる疾患モデルの開発が望まれています。

本研究では、若年者の心臓突然死の主要な原因である遺伝性不整脈の病態解明を目的として、 ランダムに遺伝子変異を導入した大規模マウスライブラリの心電図スクリーニングを行いました。そ の結果、自然発生的に致死的不整脈を呈する遺伝性不整脈モデルマウスの血統を樹立することに成功 しました。遺伝学的な解析を行うことで、原因遺伝子は、心筋細胞の収縮に重要な細胞内カルシウム を制御しているリアノジン受容体2の新規ミスセンス変異(RyR2: p.l4093V)であることを突き止め ました。加齢に伴う心機能低下や生後1年以内に心臓突然死するという、今までにない重篤な症状を 呈するこのモデルマウスは、遺伝性不整脈の病態解明や薬効評価へ貢献することが期待されます。

本研究成果は、2024 年 4 月 15 日付の「Proceedings of the National Academy of Sciences of United States of America (PNAS)」誌に掲載されています。

(英文)

Inherited arrhythmias, a serious disorders caused by genetic abnormalities in ion channels and related molecules that regulate cardiomyocyte electrical activity can lead to fatal arrhythmias and sudden cardiac death. Although significant progress has been made in identifying causative molecules and mechanisms, allowing the development of various therapies, including antiarrhythmic drugs, radiofrequency catheter ablation, and implantable cardioverter-defibrillators, a fundamental treatment remains elusive. Thus, there is a pressing need to develop more effective treatment and prevention methods, as well as disease models that can aid in advancing such strategies.

To investigate the pathogenesis of inherited arrhythmias, which are a major cause of sudden cardiac death among young individuals, researchers conducted electrocardiographic screening within a large-scale mouse library with random genetic mutations. They successfully established a mouse pedigree exhibiting inherited arrhythmias that spontaneously leads to lethal arrhythmias. Further genetic analysis identified the causative gene as a novel missense mutation in ryanodine receptor 2 (RyR2: p.14093V), crucial for regulating intracellular calcium essential for cardiomyocyte contraction. This mouse model, which exhibits severe symptoms of age-related cardiac function decline and sudden cardiac death within the first year of life, is anticipated to contribute greatly to the elucidation of inherited arrhythmia's pathogenesis and the assessment of drug efficacy.

The paper was published in the journal Proceedings of the National Academy of Sciences of United States of America (PNAS) on April 15, 2024.

2. 参考情報

- ・日本語プレスリリース https://www.tsukuba.ac.jp/journal/medicine-health/20240418140000.html
 ・英語プレスリリース https://www.tsukuba.ac.jp/en/research-news/20240418140000.html
- 論文 https://www.pnas.org/doi/10.1073/pnas.2218204121
- 3. お問い合わせ先 WPI 拠点

筑波大学 国際統合睡眠医科学研究機構(WPI-IIIS) [担当]広報 猪鼻 wpi-iiis-alliance@ml.cc.tsukuba.ac.jp [拠点ウェブページ] https://wpi-iiis.tsukuba.ac.jp/

【研究活動·実績】

1. 概要

(和文)

脳の側坐核(そくざかく)は意欲行動や睡眠調節を司る脳領域であり、そこに存在するアデノシンA_{2A} 受容体(A_{2A}R)により機能調節されることが知られています。そのため、側坐核のA_{2A}R 活性を 任意に調節することができれば、睡眠や意欲行動を制御できると期待されています。しかし、A_{2A}R は 心臓を始めとするさまざまな器官に存在しており、遺伝子改変を伴わずに、脳内の A_{2A}R のみを選択的 に機能調節することは困難でした。

本研究では、光により薬物の活性を制御するオプトケミストリーという技術に着目し、組織中 のアデノシン活性を増強する新たな光感受性薬物を開発しました。この薬物をマウスに投与して、側 坐核に選択的に光を照射したところ、遺伝子改変を伴わずに、人為的に睡眠を誘導することに初めて 成功しました。

従来の光感受性薬物は、紫外光による光毒性、血液脳関門透過性、光反応効率などの点で課題 があり、哺乳類を始めとする生体への応用は遅れていました。今回開発した光感受性薬物は、これら の課題を解決するものであり、脳内 A_{2A}R を標的とする医薬品のみならず、他の伝達物質受容体を標的 とした脳機能調節薬の開発におけるオプトケミストリーの可能性を示すものです。

この研究成果は、2024 年 4 月 30 日付の「Nature Communications」誌に掲載されています。 (英文)

The nucleus accumbens plays a pivotal role in motivational behavior and sleep regulation, modulated by adenosine A_{2A} receptors ($A_{2A}R$). Hence, selective $A_{2A}R$ regulation within this brain region could control sleep and motivation. However, $A_{2A}Rs$ are distributed across various organs, including the heart, posing challenges for precise brain-specific modulation without genetic interventions.

A research team led by Professor Michael Lazarus and Associate Professor Tsuyoshi Saitoh (TRISTAR Fellow) from the Institute of Medicine and the International Institute for Integrative Sleep Medicine (WPI-IIIS) at the University of Tsukuba delved into optochemistry. They aimed to develop a novel light-sensitive drug that enhances extracellular adenosine activity. By administering this drug to mice and selectively irradiating the nucleus accumbens with light, they succeeded in inducing sleep artificially without genetic modification for the first time.

Conventional photosensitive drugs have faced hurdles in mammals and other living organisms due to problems such as phototoxicity caused by ultraviolet light, blood-brain barrier permeability, and photoreaction efficiency. The newly developed photosensitive drug overcomes these issues, showcasing optochemistry's potential in developing drugs targeting A_{2A}R in the brain and regulating brain function by targeting other central drug receptors. Title of original paper: Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A_{2A} receptors The paper was published in the journal Nature Communications on April 30, 2024.

世界トップレベル研究拠点プログラム World Premier International Research Center Initiative (WPI) 平成 19 年度から文部科学省の事業として開始されました。システム改革の導入等の自主的な取組を促す支援により、第一線の研究者が 世界から多数集まってくるような、優れた研究環境ときわめて高い研究水準を誇る、「世界から目に見える研究拠点」の形成を目指しています。 https://www.jsps.go.jp/j-toplevel/index.html

- 2. 参考情報
 - ・日本語プレスリリース
 <u>https://www.tsukuba.ac.jp/journal/medicine-health/20240521140000.html</u>

 ・英語プレスリリース
 <u>https://www.tsukuba.ac.jp/en/research-news/20240521140000.html</u>
 - ・論文 https://www.nature.com/articles/s41467-024-47964-4
- 3. お問い合わせ先 WPI 拠点

筑波大学 国際統合睡眠医科学研究機構(WPI-IIIS) [担当]広報 猪鼻 wpi-iiis-alliance@ml.cc.tsukuba.ac.jp [拠点ウェブページ] https://wpi-iiis.tsukuba.ac.jp/